The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation. We demonstrated that magnitudes of shear stress within 1.0 to 50 dyn/cm were able to induce ASC speck formation, while 50 dyn/cm was sufficient to induce significant calcium signaling, gasdermin-D cleavage, caspase-1 activity, and IL-1β secretion, all hallmarks of inflammasome activation. Utilizing NLRP3 and caspase-1 knockout iBMDMs, we demonstrated that the NLRP3 inflammasome was primarily activated as a result of shear stress exposure. Quantitative polymerase chain reaction (qPCR), ELISA, and a small molecule inhibitor study aided us in demonstrating that expression of Piezo1, NLRP3, gasdermin-D, IL-1β, and CCL2 secretion were all upregulated in iBMDMs treated with shear stress. This study provides a foundation for further understanding the interconnected pathogenesis of chronic inflammatory diseases and the ability of shear stress to play a role in their progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18845 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Iliac Vein Compression Syndrome (IVCS) is a common risk factor for deep vein thrombosis in the lower extremities. The objective of this study was to investigate whether employing a porous medium model to simulate the compressed region of an iliac vein could improve the reliability and accuracy of Computational Fluid Dynamics (CFD) analysis outcomes of IVCS. Pre-operative Computed Tomography (CT) scan images of patients with IVCS were utilized to reconstruct models illustrating both the compression and collateral circulation of the iliac vein.
View Article and Find Full Text PDFMetabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.
View Article and Find Full Text PDFSoft Matter
January 2025
James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
We measure the response of open-cell polyurethane foams filled with a dense suspension of fumed silica particles in polyethylene glycol at compression speeds spanning several orders of magnitude. The gradual compressive stress increase of the composite material indicates the existence of shear rate gradients in the interstitial suspension caused by wide distributions in pore sizes in the disordered foam network. The energy dissipated during compression scales with an effective internal shear rate, allowing for the collapse of three data sets for different pore-size foams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!