Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data. In this article, we present a new model-based proprioceptive system for slender soft robots based on strain sensing and a strain-based modeling approach called Geometric Variable-Strain (GVS). We develop a flexible 2-Plate 6D strain sensor (Flex-2P6D) capable of measuring the 6 dimensions (6D) strain at specific points of the soft robot with an accuracy higher than 95%. Coupled with the GVS approach, the proposed methodology is able to directly measure the configuration variables and reconstruct complex robot shapes with very high accuracy, even in very challenging conditions. The sensors are embedded inside the soft body, which makes them also suitable for underwater operation and physical interaction with the environment. Something that we also demonstrate experimentally. We believe that our approach has the potential to be applied across a wide variety of applications, including observation and exploration missions, as well as human-robot interaction, where the states of the system are required for implementing precise closed-loop control and estimation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2024.0017DOI Listing

Publication Analysis

Top Keywords

soft robot
12
soft robots
12
soft
6
robot
5
advancing soft
4
robot proprioception
4
strain
4
proprioception strain
4
strain sensors
4
sensors embedding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!