The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here, we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior. We find that EP neurons are strongly engaged during this task and show bidirectional changes in activity during the choice and outcome periods of a trial. We then tested the effects of either permanently blocking cotransmission or modifying the GABA/glutamate ratio on behavior in well-trained animals. Neither manipulation produced detectable changes in behavior despite significant changes in synaptic transmission in the LHb, demonstrating that the outputs of these neurons are not required for ongoing action-outcome updating in a probabilistic switching task.

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.100488DOI Listing

Publication Analysis

Top Keywords

gaba/glutamate cotransmitting
12
cotransmitting neurons
12
entopeduncular nucleus
8
action selection
8
selection evaluation
8
probabilistic switching
8
switching task
8
neurons
5
mixed representations
4
representations choice
4

Similar Publications

The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here, we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.

View Article and Find Full Text PDF

The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP ) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.

View Article and Find Full Text PDF

Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior.

Cell Rep

September 2020

Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard Suite 200, Baltimore, MD 21224, USA. Electronic address:

Ventral tegmental area (VTA) neurons play roles in reward and aversion. We recently discovered that the VTA has neurons that co-transmit glutamate and GABA (glutamate-GABA co-transmitting neurons), transmit glutamate without GABA (glutamate-transmitting neurons), or transmit GABA without glutamate (GABA-transmitting neurons). However, the functions of these VTA cell types in motivated behavior are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!