In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film. Despite similarities in optical absorption and photoluminescence, the stripe-like, banded spherulite exhibits higher crystallinity and improved optical transparency compared to those of radial-like spherulite. X-ray nanoprobe measurements reveal tilting-angle modulations in the octahedral plane of stripe-like spherulites, correlating with the film's surface geometry. Transfer matrix calculations indicate that the optical contrast in stripe-like patterns, seen in bright-field optical microscopy, arises from optical interference effects, differing from the contrast mechanism observed in polymer spherulites. Ultrafast carrier dynamics experiments suggest that the stripe-like spherulites resemble single crystals more closely than radial-like spherulites, while electrical conductivity measurements show enhanced charge carrier transport in stripe-like spherulites. These findings offer insights into MHP spherulite states with a single composition but different morphologies, previously observed only in polymers, highlighting their potential for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c15471DOI Listing

Publication Analysis

Top Keywords

stripe-like spherulites
12
structural chirality
8
spherulite states
8
stripe-like banded
8
spherulites
6
stripe-like
6
optical
5
spontaneous formation
4
formation single-crystalline
4
single-crystalline spherulites
4

Similar Publications

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!