Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P (PIP). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK "Plo1," and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.21997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!