Silver nanoparticles (AgNPs), recognized for their unique properties, are widely applied in fields such as agriculture, biotechnology, food security, and medicine. However, concerns persist regarding their interactions with living organisms and potential environmental impacts. This study investigates the effects of AgNPs on key soil microbial indicators that are essential for ecological functioning. A pot experiment was conducted with varying concentrations of AgNPs (0, 30, 60, 120, 240 mg kg) and incubation periods (0, 15, 30, and 45 days). The results demonstrated a substantial reduction in microbial indicators, including bacterial and fungal colony-forming units (B.CFUs and F.CFUs), total microbial population (MPN), microbial basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon and nitrogen (MBC and MBN). These declines were more pronounced with increasing AgNP concentrations and prolonged incubation times, particularly within the first 15 days. Notably, even at lower concentrations, AgNPs exhibited significant toxicity to microbial indicators. The most severe impact was observed at 240 mg kg of AgNPs after 45 days, where B.CFUs, F.CFUs, MPN, MBC, and MBN showed substantial declines, with the greatest reduction at the highest concentration. Additionally, the microbial quotient (qmic) decreased by 66%, and variations in the respiratory quotient (qCO) were observed. Strong positive correlations were found among the microbial indicators, highlighting their interconnected responses to AgNP exposure. Overall, the study emphasizes the significant toxicity of AgNPs, raising concerns about their potential to disrupt soil ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17435390.2025.2454967 | DOI Listing |
Environ Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFNanotoxicology
January 2025
Chemical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran.
Silver nanoparticles (AgNPs), recognized for their unique properties, are widely applied in fields such as agriculture, biotechnology, food security, and medicine. However, concerns persist regarding their interactions with living organisms and potential environmental impacts. This study investigates the effects of AgNPs on key soil microbial indicators that are essential for ecological functioning.
View Article and Find Full Text PDFZoonoses Public Health
January 2025
Infectious Diseases Branch, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Sacramento, California, USA.
Introduction: Capnocytophaga is a genus of bacteria that are commensal to the oral microbiome of humans and some animals. Some Capnocytophaga species are found in the human oral cavity and rarely cause disease in people; the species found in animals are zoönotic and can be transmitted to people via saliva. This study describes the clinical and epidemiologic features of patients from whom Capnocytophaga spp.
View Article and Find Full Text PDFCureus
December 2024
Department of Otolaryngology, Head and Neck Surgery, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, IND.
Background and aim Etiopathogeneses of chronic rhinosinusitis are poorly understood. Recent research emphasizes culture-independent molecular sequencing to identify clusters of flora that may function as drivers of inflammation. Studies also indicate that macrolides are as effective as corticosteroids in controlling chronic rhinosinusitis.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!