Multimodal multiobjective optimization with structural network control principles to optimize personalized drug targets for drug discovery of individual patients.

Brief Bioinform

School of Electrical and Information Engineering, Zhengzhou University, No. 100, Science Avenue, Hightech District, Zhengzhou City 450001, Henan Province, China.

Published: November 2024

Structural network control principles provided novel and efficient clues for the optimization of personalized drug targets (PDTs) related to state transitions of individual patients. However, most existing methods focus on one subnetwork or module as drug targets through the identification of the minimal set of driver nodes and ignore the state transition capabilities of other modules with different configurations of drug targets [i.e. multimodal drug targets (MDTs)] embedding the knowledge of previous drug targets (i.e. multiobjective optimization). Therefore, a novel multimodal multiobjective evolutionary optimization framework (called MMONCP) is proposed to optimize PDTs with network control principles. The key points of MMONCP are that a constrained multimodal multiobjective optimization problem is formed with discrete constraints on the decision space and multimodality characteristics, and a novel evolutionary algorithm denoted as CMMOEA-GLS-WSCD is designed by combining a global and local search strategy and a weighting-based special crowding distance strategy to balance the diversity of both objective and decision space. The experimental results on three cancer genomics data from The Cancer Genome Atlas indicate that MMONCP achieves a higher performance including algorithm convergence and diversity, the fraction of identified MDTs, and the area under the curve score than advanced algorithms. Additionally, MMONCP can detect the early state from the difference between the target activity and toxicity of MDTs and provide early treatment options for cancer treatment in precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaf007DOI Listing

Publication Analysis

Top Keywords

drug targets
24
multimodal multiobjective
12
multiobjective optimization
12
network control
12
control principles
12
structural network
8
personalized drug
8
individual patients
8
decision space
8
drug
7

Similar Publications

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

The World Health Organisation (WHO) has set goals to eliminate hepatitis C (HCV) as a global health threat by 2030. To meet this goal, Australia must increase testing and diagnosis, including expanding access to care through community pharmacists. This study aims to explore community pharmacists' preparedness to discuss and offer HCV testing and treatment.

View Article and Find Full Text PDF

The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases.

J Cell Biochem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!