The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response. In this research, a screening system is presented for the detection of molecules that interfere with the internal ribosomal entry site (IRES) of Cricket paralysis virus (Dicistroviridae) which has been well characterized in previous research. Over-expression and RNAi experiments identified the importance of eIF4A, a component of the cap-dependent translation initiation complex, to modify the activity of IRES-mediated translation. Application of Rocaglamide A (RocA), a natural product from Aglaia plants and inhibitor of eIF4A, resulted in strong stimulation of IRES-mediated translation in reporter assays as well as increased CrPV genome replication and virion production in lepidopteran Hi5 cells. At 100 nM of RocA, dsRNA molecules accumulated in infected cells, corresponding to full-length genome (9.5 kb) and a smaller fragment (0.8 kb) with unknown function. Treatment of silkworm larvae with RocA by injection or topically was highly toxic while no strong stimulation of CrPV infection could be observed. The prospect of the use of rocaglamates as insecticides and enhancers of CrPV infection is discussed together with its potential impact on mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/arch.70028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!