Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness. To address these limitations, a modified amino acid-based pH-responsive injectable shear-thinning hydrogel -β-CD--p(Gly-MA) has been developed as an efficient drug carrier. In the two-step synthetic approaches, first, the well-known amino acid glycine (Gly) is modified to form glycine methacrylate (Gly-MA). Afterward, Gly-MA is chemically crosslinked with β-cyclodextrin (β-CD), an oligosaccharide, using an ethylene glycol dimethacrylate (EGDMA) crosslinker. The presence of these biomaterials as building blocks enhances the biocompatibility, hemocompatibility, and biodegradability of the hydrogel. They also reduce the risk of immunogenicity. The unique property of easy injectability enables minimally invasive administration. This feature also helps prolong drug retention at the target site, further optimizing drug delivery efficiency. Moreover, the pH-responsive feature of the developed -β-CD--p(Gly-MA) hydrogel ensures controlled drug release in response to the physiological conditions of the target site, enhancing therapeutic efficacy. The study focuses on investigating the loading and release of diclofenac sodium (DS), a non-steroidal anti-inflammatory drug (NSAID) commonly used to treat arthritic pain and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01402bDOI Listing

Publication Analysis

Top Keywords

drug delivery
16
drug
9
amino acid-based
8
injectable hydrogels
8
invasive administration
8
target site
8
functionalized amino
4
acid-based injectable
4
hydrogels sustained
4
sustained drug
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells.

View Article and Find Full Text PDF

β-Glucuronidase-Responsive Albumin-Binding Prodrug of Colchicine-Site Binders for Selective cancer Therapy.

ChemMedChem

January 2025

UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.

The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.

View Article and Find Full Text PDF

Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!