Objectives: Spingosine-1-phosphate (S1P) and ceramides are bioactive sphingolipids that influence cancer cell fate. Anti-ceramide antibodies might inhibit the effects of ceramide. The aim of this study was to assess the potential role of circulating S1P and anti-ceramide antibody as biomarkers in non-small cell lung cancer (NSCLC).
Methods: We recruited 66 subjects (34 controls and 32 patients with NSCLC). Patient history and clinical variables were taken from all participants. Venous blood samples were collected to evaluate plasma biomarkers. If bronchoscopy was performed, bronchial washing fluid (BWF) was also analyzed. We measured the levels of S1P and anti-ceramide antibody with ELISA.
Results: S1P levels were significantly higher in the NSCLC group (3770.99 ± 762.29 ng/mL vs. 366.53 ± 249.38 ng/mL, patients with NSCLC vs. controls, respectively, < 0.001). Anti-ceramide antibody levels were significantly elevated in the NSCLC group (278.70 ± 19.26 ng/mL vs. 178.60 ± 18 ng/mL, patients with NSCLC vs. controls, respectively, = 0.007). Age or BMI had no significant effect on anti-ceramide antibody or S1P levels. BWF samples had higher levels of anti-ceramide antibody (155.29 ± 27.58 ng/mL vs. 105.87 ± 9.99 ng/mL, patients with NSCLC vs. controls, respectively, < 0.001). Overall survival (OS) was 13.36 months. OS was not affected by anti-ceramide antibody or S1P levels.
Conclusion: Higher levels of S1P and anti-ceramide antibody were associated with active cancer. These results suggest that sphingolipid alterations might be important features of NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742942 | PMC |
http://dx.doi.org/10.3389/pore.2024.1611929 | DOI Listing |
Pathol Oncol Res
January 2025
Department of Pulmonology, Semmelweis University, Budapest, Hungary.
Objectives: Spingosine-1-phosphate (S1P) and ceramides are bioactive sphingolipids that influence cancer cell fate. Anti-ceramide antibodies might inhibit the effects of ceramide. The aim of this study was to assess the potential role of circulating S1P and anti-ceramide antibody as biomarkers in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFCell Physiol Biochem
August 2024
Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA,
Background/aims: After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract.
Methods: We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5 stem cells, preventing GI-ARS lethality in C57B/L6J mice.
Cell Metab
July 2024
Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. Electronic address:
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
Major depressive disorder (MDD) has a lifetime prevalence of approximately 10% and is one of the most common diseases worldwide. Although many pathogenetic mechanisms of MDD have been proposed, molecular details and a unifying hypothesis of the pathogenesis of MDD remain to be defined. Here, we investigated whether tyrosine nitrosylation, which is caused by reaction of the C-atom 3 of the tyrosine phenol ring with peroxynitrate (ONOO), plays a role in experimental MDD, because tyrosine nitrosylation may affect many cell functions altered in MDD.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
October 2024
Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York. Electronic address:
Purpose: After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5 stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!