The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock. By systematically optimizing strain adaptation, medium composition, and scaling up the process from shake flasks to a bioreactor, a maximum sophorolipid yield of 2.6 ± 0.21 g/L was achieved. Extensive characterization was conducted, encompassing emulsification index (54 %), surface tension reduction, and several chemical analyses (anthrone, iodine, saponification, lipid solubility). Advanced structural elucidation techniques such as Fourier-transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy were employed for structural confirmation of the extracted biosurfactant. FTIR spectroscopy identified characteristic functional groups, while LC-MS revealed distinct sophorolipid congeners with varying lipid chain lengths and acetylation. NMR spectroscopy corroborated the presence of disaccharide and fatty acid components, indicating the extracted biosurfactant might be sophorolipid. This study underscores the feasibility of utilizing agro-industrial waste for the eco-friendly production of sophorolipid biosurfactants and provides detailed insights into their structural features, highlighting their potential applications across diverse fields such as pharmaceuticals, cosmetics, and environmental remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743883 | PMC |
http://dx.doi.org/10.1016/j.crmicr.2024.100334 | DOI Listing |
Curr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDF<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.
View Article and Find Full Text PDFFoods
December 2024
Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania.
Rich in bioactive compounds, carbohydrates, fibers, minerals, and trace elements, apple pomace (AP) is a significant agro-industrial by-product, which pollutes and brings high management costs. The current study investigates the possibility of using an aqueous AP extract (APE) as the main ingredient in a jelly candy recipe, replacing artificial colors and flavors and improving its nutritional value. APE and formulated jelly candies were analyzed in terms of their phytochemical profile, antioxidant capacity, and color parameters.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!