Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.
Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions. The divers were instructed to breathe normally and perform three dry apneas of 1, 2, and 3-min duration at 2-min intervals in a sitting position. Before and after the apneas, CO was recorded. The signal from the force sensor, attached to a chest belt, was used to record the frequency and amplitude of the chest movements, and the product of these values in the 60 s before the apnea was used to predict CO. The mean CO was below 35 mmHg before all apneas. The mean amplitude of the signal from the force sensor increased from apnea 1 to apnea 3 (p < 0.001), while the respiratory rate was similar (NS). The product of the respiratory rate and amplitude from the force sensor explained 34% of the variability of the CO in the third apnea.
Conclusion: This study shows that a force sensor can estimate hyperventilation before static apnea, providing a basis for further research. More studies are needed to confirm its effectiveness in preventing issues. Freedivers may hyperventilate without noticing it, and such a system could improve awareness of this condition. Additional underwater tests are essential to determine whether this system can enhance safety in freediving.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743614 | PMC |
http://dx.doi.org/10.3389/fphys.2024.1498399 | DOI Listing |
SICOT J
January 2025
Hospital Henri Mondor, University Paris East (UPEC), Avenue du Marechal de Lattre de Tassigny, 94000 Creteil, France.
Background: Hinge fracture on the lateral part of the tibia (LHF) is a common complication of medial Open Wedge High Tibial Osteotomy (OWHTO). Many factors have been described as risks for these fractures, but no study has compared an osteotome or an oscillating saw to prevent LHF following OWHTO.
Methods: This "propensity-score-matched" (PSM) study was conducted from data obtained in the literature from 1974 to November 2024.
Langmuir
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.
View Article and Find Full Text PDFFront Physiol
January 2025
Environmental Physiology Group, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.
Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions.
Luminescence
January 2025
Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
Two novel nitrogen hybrid fluorescent sensors based on the ESIPT mechanism were successfully synthesized for the detection of fluoride ions (F), and they exhibit high sensitivity and selectivity with a fast response. The detection limits even reach the parts per billion level. With the addition of F, both sensors showed a ratiometric fluorescence change with a large Stokes shift.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.
Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!