Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).
Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .
Results: The qRT-PCR analyses revealed high levels of expression in the antennae without any apparent sex bias, and it was also highly expressed in the adult stage. Recombinant RpedOBP38 was prepared by expressing it in BL21 (DE3) followed by its purification with a Ni-chelating affinity column. RpedOBP38 was found to bind most strongly to trans-2-decenal (Ki = 7.440) and trans-2-nonenal (Ki = 10.973), followed by β-pinene, (+) -4-terpineol, carvacrol, methyl salicylate, and (-)-carvone. The 3D structure of RpedOBP38 contains six α-helices and three interlocked disulfide bridges comprising a stable hydrophobic binding pocket. In a final series of molecular docking analyses, several polar (e.g., His 94, Glu97) and nonpolar (e.g., Leu29, Ile59) residues were found to be involved in RpedOBP38-ligand binding.
Conclusion: These data support a role for RpedOBP38 in the perception of volatiles derived from host plants, providing important insight into the mechanisms that govern olfactory recognition in , thereby informing the development of ecologically friendly approaches to managing infestations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743672 | PMC |
http://dx.doi.org/10.3389/fphys.2024.1475489 | DOI Listing |
Front Physiol
January 2025
Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.
Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).
Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .
ACS Omega
January 2025
Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai District, Puttaparthi, Andhra Pradesh 515134, India.
Diabetes has become a global epidemic, affecting even the younger people on an alarming scale. Inhibiting intestinal α-glucosidase is one of the key approaches to managing type 2 diabetes (T2D). In the present study, phenolic compounds (PCs) produced by endophytic fungi as potential α-glucosidase inhibitors (AGIs) are explored through ADMET profiling, molecular docking, and molecular dynamics (MD) Simulations.
View Article and Find Full Text PDFACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.
View Article and Find Full Text PDFTransfusion
January 2025
Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!