Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs. Based on this, Ag43β700_RBD protein were expressed onto () membrane. Artificial viral mimetic Ag43β700_RBD OMVs were fabricated by self-assembly through membrane disruption of the Ag43β700_RBD using a chemical detergent mainly containing lysozyme. Through serial centrifugation to purify fabricated OMVs, spherical Ag43β700_RBD OMVs with an average diameter of 218 nm were obtained. The confirmation of the RBD expressed on OMVs was performed using trypsin treatment.

Results: Our viral mimetic Ag43β700_RBD OMVs had an impact on the theranostic studies: (i) angiotensin-converting enzyme 2 blockade assay, (ii) enzyme-linked immunosorbent assay for the OMVs, and (iii) intracellular uptake and neutralization assay. As serodiagnostic surrogates, Ag43β700_RBD OMVs were applied to ACE2 blockade and OMVs-ELISA assay to quantify neutralization antibodies (nAbs). They reduced the robust immune response in vitro, especially IL-6 and IL-1β. Experiments in mice, Ag43β700_RBD OMVs was successfully proven to be safe and effective; they produced a detectable level of nAbs with 39-58% neutralisation and reduced viral titres in the lungs and brain without weight loss.

Conclusion: The developed viral mimetic Ag43β700_RBD OMVs may therefore be applied as a nanovesicle-theranostic platform for further emerging infectious disease-related diagnosis, vaccination, and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745048PMC
http://dx.doi.org/10.2147/IJN.S497742DOI Listing

Publication Analysis

Top Keywords

ag43β700_rbd omvs
28
viral mimetic
20
mimetic ag43β700_rbd
16
omvs
14
angiotensin-converting enzyme
12
ag43β700_rbd
9
outer membrane
8
membrane vesicles
8
targeting angiotensin-converting
8
omvs applied
8

Similar Publications

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by , are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as , present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by C:2a:P1.

View Article and Find Full Text PDF

Immunogenicity and Pre-Clinical Efficacy of an OMV-Based SARS-CoV-2 Vaccine.

Vaccines (Basel)

September 2023

Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy.

Article Synopsis
  • The global vaccination campaign against SARS-CoV-2 aims to provide 20 billion doses, requiring affordable manufacturing and logistics for all countries.
  • Outer membrane vesicles (OMVs) can be engineered to produce effective vaccines by incorporating SARS-CoV-2 spike protein peptides, which trigger strong immune responses and neutralizing antibodies in mice.
  • OMVs can also be modified to target different variants like Omicron, effectively neutralizing multiple strains, indicating their potential as versatile vaccines in the ongoing fight against COVID-19.
View Article and Find Full Text PDF

In this study, we developed a pneumatically driven microfluidic platform (PDMFP) operated by a fully automated particle concentration system (FAPCS) for the pretreatment of micro- and nano-sized materials. The proposed PDMFP comprises a 3D network with a curved fluidic chamber and channel, five on/off pneumatic valves for blocking fluid flow, and a sieve valve for sequential trapping of microbeads and target particles. Using this setup, concentrated targets are automatically released into an outlet port.

View Article and Find Full Text PDF

Engineering probiotic-derived outer membrane vesicles as functional vaccine carriers to enhance immunity against SARS-CoV-2.

iScience

January 2023

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China.

Because of the continued emergence of SARS-CoV-2 variants, there has been considerable interest in how to display multivalent antigens efficiently. Bacterial outer membrane vesicles (OMVs) can serve as an attractive vaccine delivery system because of their self-adjuvant properties and the ability to be decorated with antigens. Here we set up a bivalent antigen display platform based on engineered OMVs using mCherry and GFP and demonstrated that two different antigens of SARS-CoV-2 could be presented simultaneously in the lumen and on the surface of OMVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!