Objective: To develop a machine learning-based clinical and/or radiomics model for predicting the primary site of brain metastases using multiparametric magnetic resonance imaging (MRI).
Materials And Methods: A total of 202 patients (87 males, 115 females) with 439 brain metastases were retrospectively included, divided into training sets (brain metastases of lung cancer [BMLC] = 194, brain metastases of breast cancer [BMBC] = 108, brain metastases of gastrointestinal tumor [BMGiT] = 48) and test sets (BMLC = 50, BMBC = 27, BMGiT = 12). A total of 3,404 quantitative image features were obtained through semi-automatic segmentation from MRI images (T1WI, T2WI, FLAIR, and T1-CE). Intra-class correlation coefficient (ICC) was used to examine segmentation stability between two radiologists. Radiomics features were selected using analysis of variance (ANOVA), recursive feature elimination (RFE), and Kruskal-Wallis test. Three machine learning classifiers were used to build the radiomics model, which was validated using five-fold cross-validation on the training set. A comprehensive model combining radiomics and clinical features was established, and the diagnostic performance was compared by area under the curve (AUC) and evaluated in an independent test set.
Results: The radiomics model differentiated BMGiT from BMLC (13 features, AUC = 0.915 ± 0.071) or BMBC (20 features, AUC = 0.954 ± 0.064) with high accuracy, while the classification between BMLC and BMBC was unsatisfactory (11 features, AUC = 0.729 ± 0.114). However, the combined model incorporating radiomics and clinical features improved the predictive performance, with AUC values of 0.965 for BMLC vs. BMBC, 0.991 for BMLC vs. BMGiT, and 0.935 for BMBC vs. BMGiT.
Conclusion: The machine learning-based radiomics model demonstrates significant potential in distinguishing the primary sites of brain metastases, and may assist screening of primary tumor when brain metastasis is suspected whereas history of primary tumor is absent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743164 | PMC |
http://dx.doi.org/10.3389/fneur.2024.1474461 | DOI Listing |
Mol Biol Rep
January 2025
Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.
Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Elife
January 2025
Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, United States.
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
Lung cancer is a malignant tumor with high morbidity and mortality in China and worldwide. Once it metastasizes to the brain, its prognosis is very poor. Brain metastases are found in about 20% of newly diagnosed non-small-cell lung cancer (NSCLC) patients.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Objective: To develop a machine learning-based clinical and/or radiomics model for predicting the primary site of brain metastases using multiparametric magnetic resonance imaging (MRI).
Materials And Methods: A total of 202 patients (87 males, 115 females) with 439 brain metastases were retrospectively included, divided into training sets (brain metastases of lung cancer [BMLC] = 194, brain metastases of breast cancer [BMBC] = 108, brain metastases of gastrointestinal tumor [BMGiT] = 48) and test sets (BMLC = 50, BMBC = 27, BMGiT = 12). A total of 3,404 quantitative image features were obtained through semi-automatic segmentation from MRI images (T1WI, T2WI, FLAIR, and T1-CE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!