Recent advances in electrochemical copper catalysis for modern organic synthesis.

Beilstein J Org Chem

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.

Published: January 2025

In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744695PMC
http://dx.doi.org/10.3762/bjoc.21.9DOI Listing

Publication Analysis

Top Keywords

copper catalysis
8
advances electrochemical
4
electrochemical copper
4
catalysis modern
4
modern organic
4
organic synthesis
4
synthesis decades
4
decades organic
4
organic electrosynthesis
4
electrosynthesis emerged
4

Similar Publications

Heterogeneous copper-catalyzed Grignard reactions with allylic substrates.

Chem Commun (Camb)

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden.

Herein, we present a highly efficient allylic substitution of carbonates with Grignard reagents using a reusable cellulose-supported nanocopper catalyst. This approach highlights the first instance of heterogeneous catalysis for the cross-coupling of allylic alcohol substrates with Grignard reagents. The method features high yields, excellent regioselectivity, and complete chirality transfer.

View Article and Find Full Text PDF

The hydrogenation of carbon dioxide into profitable chemicals is a viable path toward achieving the objective of carbon neutrality. However, the typical approach for hydrogenation of CO heavily relies on thermally driven catalysis at high temperatures, which is not aligned with the goals of carbon neutrality. Thus, there is a critical need to explore new catalytic methods for the high-efficiency conversion of CO.

View Article and Find Full Text PDF

Cu(OTf)-catalyzed multicomponent reactions.

Beilstein J Org Chem

January 2025

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 9, 22100, Como, Italy.

This review reports the achievements in copper(II) triflate-catalyzed processes concerning the multicomponent reactions, applied to the synthesis of acyclic and cyclic compounds. In particular, for the heteropolycyclic systems mechanistic insights were outlined as well as cycloaddition and aza-Diels-Alder reactions were included. These strategies have gained attention due to their highly atom- and step-economy, one-step multi-bond forming, mild reaction conditions, low cost and easy handling.

View Article and Find Full Text PDF

Recent advances in electrochemical copper catalysis for modern organic synthesis.

Beilstein J Org Chem

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.

In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.

View Article and Find Full Text PDF

Harnessing Multi-Center-2-Electron Bonds for Carbene Metal-Hydride Nanocluster Catalysis.

Angew Chem Int Ed Engl

January 2025

CNRS/UCSD, Chemistry, University of California, San Diego, 5213 Pacific Hall,, Department of Chemistry, 92093-0343, La jolla, UNITED STATES.

N-Heterocyclic carbene (NHC) ligands possess the ability to stabilize metal-based nanomaterials for a broad range of applications. With respect to metal-hydride nanomaterials, however, carbenes are rare, which is surprising if one considers the importance of metal-hydride bonds across the chemical sciences. In this study, we introduce a bottom-up approach leveraging preexisting metal-metal m-center-n-electron (mc-ne) bonds to access a highly stable cyclic(alkyl)amino carbene (CAAC) copper-hydride nanocluster, [(CAAC)6Cu14H12][OTf]2 with superior stability compared to Stryker's reagent, a popular commercial phosphine-based copper hydride catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!