Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs. The upper layer (mixolimnion) had measurable light and oxygen, and contained diverse GVs linked to photosynthetic protists, indicating adaptation to surface biotic and abiotic conditions. In contrast, the saline lower layer (monimolimnion), lacking oxygen and light, hosted GVs associated with predicted heterotrophic protists, some of which are known for a predatory lifestyle, and with several viral genes suggesting adaptation to deep-water anaerobic conditions. Our observations underscore the coupling between physical and chemical gradients, microeukaryotes and their associated GVs in Lake A, and provide insight into the potential for GVs to directly and indirectly impact host metabolism. There were similarities between the genetic composition of GVs and the metabolic processes of their potential hosts, implying co-evolution and niche-adaptation within the lake habitats. Notably, we found a greater presence of viral rhodopsins in deeper water layers, suggesting an evolutionary relationship with potential hosts capable of supplementing their energetic needs to thrive in low energy, anoxic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745019 | PMC |
http://dx.doi.org/10.1093/ismeco/ycae155 | DOI Listing |
ISME Commun
January 2025
Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States.
Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
To fully characterize papillomavirus diversity in giant pandas (), we identified a novel papillomavirus (named AmPV5, GenBank accession number MZ357114) in oral swabs from giant pandas with the help of viral metagenomics technology in this study. The complete circular genome of AmPV5 is 7,935 bp in length, with a GC content of 39.1%.
View Article and Find Full Text PDFbioRxiv
December 2024
DOE Joint Genome Institute, Berkeley, California, USA.
Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2024
Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!