Little is known about the association of social media and belief in alcohol and cancer with binge drinking. This study aimed to perform feature selection and develop machine learning (ML) tools to predict occurrence of binge drinking among adults in the United State. A total of 5,886 adults including 1,252 who ever experienced with binge drinking were selected from the 2022 Health Information National Trends Survey (HINTS 6). Feature selection of 69 variables was conducted using Boruta and the Least Absolute Shrinkage and Selection Operator (LASSO). The Random Over Sampling Example (ROSE) method was utilized to deal with the imbalance data. Seven machine learning (ML) tools including the Support Vector Machines (SVMs) algorithms, Logistic Regression, Naïve Bayes, Random Forest, K-Nearest Neighbor, Gradient Boosting Machine, and XGBoost were applied to develop ML models to predict binge drinking. The overall prevalence of binge drinking among U.S. adults is 21.3%. Both Boruta and LASSO selected 28 identical variables. SVM with Radial Basis Function revealed the best model with the highest accuracy of 0.949 and sensitivity of 0.958. The top risk factors of binge drinking were tobacco use (e-cigarette use and smoking status), belief in alcohol (alcohol decreases the risk of future health), belief in cancer (prevention is not possible, worry about getting cancer), and social media (social media visits and sharing health information). These findings underscore the need for multiple health behavior interventions to enhance education related to alcohol use and cancer and how to effectively employ social media to improve health outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745038PMC
http://dx.doi.org/10.1145/3670085.3670090DOI Listing

Publication Analysis

Top Keywords

binge drinking
28
social media
16
drinking adults
12
adults united
8
united state
8
2022 health
8
health national
8
national trends
8
trends survey
8
belief alcohol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!