Continuous cropping has emerged as a significant challenge affecting yield and quality in greenhouse strawberries, particularly as the cultivation of strawberries as a protected crop continues to increase. To address this issue, substrates with 0 or 2 years of continuous cropping were fertilized with two types of organic materials: vermicompost derived from either sludge or cattle manure. A control group consisted of substrate without the addition of vermicompost. Both type of vermicompost improved substrate fertility, promoted plant growth and fruit quality. The cattle manure vermicompost had a better improvement effect at peak fruiting stage. Substrate nutrients were increased 14.58~38.52% (0-year substrate) and 12.04%~42.54% (2-year substrate), respectively. In both substrate types, there was a substantial increase in microbial population and enzyme activity, accompanied by a significant decrease in phenolic acid content. During the senescence stage, the use of cattle manure vermicompost led to enhancements in plant height, leaf area, and root length, with increases ranging from 15.01% to 32.77% and 23.75% to 32.78% across the two substrate types compared to the control group. Furthermore, the application of cattle manure vermicompost significantly improved both fruit yield and quality. Compared with the control (CK), the cattle manure vermicompost increased fruit yield by 18.29% and 19.64% in the 0- and 2-year substrates, respectively. The contents of soluble sugars, vitamin C, and free amino acids in the fruits increased by 21.42%~34.16% (0-year substrate) and 9.62%~42.62% (2-year substrate), at peak fruiting stage. Cattle manure vermicompost application to the 2-year substrate ranked higher in the membership function than the CK treatment at 0-year planting. In conclusion, the application of vermicompost can significantly improve strawberry fruit yield and quality, as well as substrate characteristics, thus effectively addressing challenges associated with continuous cropping. Furthermore, the use of cattle manure vermicompost produced more pronounced positive effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743566PMC
http://dx.doi.org/10.3389/fpls.2024.1514675DOI Listing

Publication Analysis

Top Keywords

cattle manure
32
manure vermicompost
24
continuous cropping
16
yield quality
12
2-year substrate
12
fruit yield
12
vermicompost
11
substrate
11
manure
8
control group
8

Similar Publications

Continuous cropping has emerged as a significant challenge affecting yield and quality in greenhouse strawberries, particularly as the cultivation of strawberries as a protected crop continues to increase. To address this issue, substrates with 0 or 2 years of continuous cropping were fertilized with two types of organic materials: vermicompost derived from either sludge or cattle manure. A control group consisted of substrate without the addition of vermicompost.

View Article and Find Full Text PDF

This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.

View Article and Find Full Text PDF

Corn stalk fibers extracted from cattle manure (CSFCM) represent a unique class of natural fibers that undergo biological pre-treatment during ruminant digestion. This study systematically investigates the optimization of CSFCM-reinforced friction materials through controlled silane treatment (2-10 wt.%).

View Article and Find Full Text PDF

Impact of Automation Level of Dairy Farms in Northern and Central Germany on Dairy Cattle Welfare.

Animals (Basel)

December 2024

Department of Agricultural Process Engineering, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18051 Rostock, Germany.

An increasing number of automation technologies for dairy cattle farming, including automatic milking, feeding, manure removal and bedding, are now commercially available. The effects of these technologies on individual aspects of animal welfare have already been explored to some extent. However, as of now, there are no studies that analyze the impact of increasing farm automation through various combinations of these technologies.

View Article and Find Full Text PDF

Effect of variation in gridded cattle diet composition on estimated enteric methane emissions in data sparse tropical regions.

Animal

January 2025

School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, United Kingdom.

Livestock directly contribute to greenhouse gas emissions, mainly through enteric fermentation and to a lesser extent manure management. Livestock feed composition plays a crucial role in diet quality and the resulting emissions from livestock. Diet composition varies seasonally particularly in tropical environments with long dry periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!