Efficient thermal management is crucial for optimizing the performance and longevity of automotive engines, particularly as environmental regulations become more stringent and consumer demand for fuel efficiency increases. This paper investigates the energy and exergy performance of a wavy fin-and-tube radiator employing novel ternary nanofluids (TNFs) for enhanced automotive cooling. A theoretical comparative analysis was performed on four distinct ethylene glycol-water solution-based TNF configurations. TNF 1 (ZnO-AlO-SiO) is made up of all spherical-shaped nanoparticles; TNF 2 (AlO-TiO-MWCNT) is made up of both spherical and cylindrical nanoparticles; TNF 3 (Fe-TiO-Graphene) comprises spherical and platelet nanoparticles; and TNF 4 (AlO-MWCNT-Graphene) has dissimilar-shaped nanoparticles. The radiator's performance is assessed under simulated idle, city, and highway driving conditions to evaluate its operation in various automotive cooling demands. The results showed that, for most of the radiator operating scenarios and base fluid mixture configurations tested, TNF 1 offers the best performance. Additionally, the change in volume fraction for the EG/W (20:80) base fluid only slightly affects the heat transfer rate and exergy efficiency for TNF 1. However, increasing the volume fraction for the EG/W (50:50) base fluid TNFs has a more significant negative effect. In all radiator operation scenarios, the outlet temperature of the TNFs will decrease relative to the intake temperature. Ultimately, the research found that the TNFs would provide improved performance across all conditions, particularly in city and highway driving scenarios when there is a greater need for cooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742828PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41509DOI Listing

Publication Analysis

Top Keywords

nanoparticles tnf
12
base fluid
12
wavy fin-and-tube
8
radiator operating
8
ternary nanofluids
8
automotive cooling
8
city highway
8
highway driving
8
volume fraction
8
fraction eg/w
8

Similar Publications

Efficient thermal management is crucial for optimizing the performance and longevity of automotive engines, particularly as environmental regulations become more stringent and consumer demand for fuel efficiency increases. This paper investigates the energy and exergy performance of a wavy fin-and-tube radiator employing novel ternary nanofluids (TNFs) for enhanced automotive cooling. A theoretical comparative analysis was performed on four distinct ethylene glycol-water solution-based TNF configurations.

View Article and Find Full Text PDF

External environments (e.g., pollutants, irritants, ultraviolet radiation, etc) probably activate oxidative stress on the ocular surface, further leading to inflammatory responses and cellular apoptosis.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis.

View Article and Find Full Text PDF

There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!