The desert locust () is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security. In this study, we combined the maximum entropy modelling and geographic information system technology to conduct a comprehensive analysis of the impact of climate change on the distribution patterns and habitat adaptability of desert locusts. The results indicate that the suitable areas for desert locusts (0.2976 × 10 km) are concentrated in northern Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key environmental variables affecting the desert locust distribution include temperature annual range, mean temperature of the coldest quarter, average temperature of February, and precipitation of the driest month. Under the SSP1-2.6 and SSP5-8.5 climate scenarios, potential suitable areas for desert locusts are estimated to increase from 2030 (2021-2040) to 2090 (2081-2100). By 2090, highly suitable areas for SSP1-2.6 and SSP5-8.5 are projected to be 0.0606 × 10 and 0.0891 × 10 km, respectively, reflecting an expansion of 1.84 and 2.77% compared to existing ones. These research findings provide a theoretical basis for adopting prevention and control strategies for desert locusts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0007485324000440 | DOI Listing |
Bull Entomol Res
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China.
The desert locust () is a destructive migratory pest, posing great threat to over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert locust habitats holds profound significance in ensuring global agricultural resilience and food security.
View Article and Find Full Text PDFSci Rep
December 2024
India Meteorological Department, New Delhi, 110003, India.
Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany.
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!