Purpose: Introducing compensated variable-prephasing (CVP), a phantom-based method for gradient waveform measurements. The technique is based on the variable-prephasing (VP) method, but takes into account the effects of all gradients involved in the measurement.

Methods: We conducted measurements of a trapezoidal test gradient and of an EPI readout gradient train with three approaches: VP, CVP, and fully compensated variable-prephasing (FCVP). We compared them to one another and to predictions based on the gradient system transfer function. Furthermore, we used the measured and predicted EPI gradients for trajectory corrections in phantom images on a 7 T scanner.

Results: The VP gradient measurements are confounded by lingering oscillations of the prephasing gradients, which are compensated in the CVP and FCVP measurements. FCVP is vulnerable to a sign asymmetry in the gradient chain. However, the trajectories determined by all three methods resulted in comparably high EPI image quality.

Conclusion: We present a new approach allowing for phantom-based gradient waveform measurements with high precision, which can be useful for trajectory corrections in non-Cartesian or single-shot imaging techniques. In our experimental setup, the proposed "compensated variable-prephasing" method provided the most reliable gradient measurements of the different techniques we compared.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.30425DOI Listing

Publication Analysis

Top Keywords

gradient waveform
12
waveform measurements
12
compensated variable-prephasing
12
phantom-based gradient
8
gradient
8
trajectory corrections
8
gradient measurements
8
measurements
7
compensated
4
measurements compensated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!