Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity. The soybean GmTIP3-1 and GmTIP3-2 were found to be expressed exclusively in seeds. Unlike rest of the aquaporins (AQPs), the expression of GmTIP3s gradually increased during seed maturation. The GmTIP3s also show higher expression during the initiation of seed germination, suggesting their potential role in the solute transport during seed maturation and germination. Further, GmTIP3-1 and GmTIP3-2 were functionally characterised to understand the structure, pore morphology, pore hydrophobicity, sub-cellular localization, and solute specificity. The solute specificity of TIPs is crucial in various physiological and developmental processes. Solute transport activity studied using yeast growth and survivability assay suggests that GmTIP3-1 and GmTIP3-2 can transport hydrogen peroxide (HO) and boric acid, both of which are known to play significant role in seed germination. The information provided here will help to understand the precise role of TIP3 genes in seed development and germination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15399 | DOI Listing |
Health Promot Int
January 2025
Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549,Singapore.
This is a state-of-the-art review of historical developments, current approaches and recommended future directions in physical activity (PA) research, practice and policy. Since the early epidemiological studies in the 1950s, PA research has developed from within a biomedical paradigm. There is now a strong evidence base linking PA with positive health outcomes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University, College of Chemistry and Molecular Engineering, Chengfu Road No.292, 100871, Beijing, CHINA.
Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hangzhou Dianzi University, College of Automation, CHINA.
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong.
Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!