Electrostatic and Electronic Effects on Doped Nickel Oxide Nanofilms for Water Oxidation.

J Am Chem Soc

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.

Published: January 2025

An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts. However, rigorous catalyst tests and DFT calculations are still needed to rationally optimize NiO catalysts. In this work, we combine plasma-enhanced atomic layer deposition (PE-ALD) and density functional theory (DFT) to address the role of dopants in promoting NiO OER activity. Ultrathin films of NiO doped with Zn, Al, and Sn presented improved intrinsic activity, stability, and durability for the OER. The results show a low to high catalytic performance of ZnNiO < NiO < AlNiO < SnNiO, which we attribute to an increase in the concentration of valence band (VB) holes combined with conduction band (CB) electron conductivity, characterized by electrochemical impedance spectroscopy (EIS). The influence of doping on the electronic structure and catalytic activity was investigated using advanced characterization techniques and density functional theory (DFT) calculations (PEB0/pob-TZVP). DFT complements the experimental results, showing that the dopant charge states and orbital hybridization enhance the OER by improving the charge carrier concentration and mobility, thus allowing optimal binding energies and charge dynamics and delocalization. Our findings demonstrate the potential of PE-ALD-doped nanofilms NiO and DFT to rationally design and develop catalysts for sustainable energy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c14493DOI Listing

Publication Analysis

Top Keywords

highly active
8
dft calculations
8
density functional
8
functional theory
8
theory dft
8
nio
6
dft
5
electrostatic electronic
4
electronic effects
4
effects doped
4

Similar Publications

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Purpose: Mesothelin (MSLN) is highly expressed in high grade serous/ endometrioid ovarian cancers (HGOC). Anetumab ravtansine (AR) is an antibody drug conjugate directed at MSLN antigen with a tubulin polymerization inhibitor. We assessed safety, activity and pharmacokinetics of the combination AR/bevacizumab (Bev) (ARB) versus weekly paclitaxel (wP)/Bev (PB) in patients with platinum resistant/refractory HGOC (prrHGOC).

View Article and Find Full Text PDF

Purpose: Renal medullary carcinoma (RMC) is a highly aggressive malignancy defined by the loss of the SMARCB1 tumor suppressor. It mainly affects young individuals of African descent with sickle cell trait, and it is resistant to conventional therapies used for other renal cell carcinomas. This study aimed to identify potential biomarkers for early detection and disease monitoring of RMC.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution.

Mol Biol Evol

January 2025

Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.

View Article and Find Full Text PDF

Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!