Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation. The release of the whole-genome data from Paeonia ostii now allows us to conduct a thorough investigation of the tree peony MADS-box gene family.

Results: In this study, we identified 110 MADS-box genes in Paeonia ostii that were classified into 5 subgroups. Gene structure, domain and motif analyses revealed the conservation of the structure of these subgroups. Analysis of the cis-acting elements revealed that the 110 PoMADS genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Quantitative real-time PCR analysis was employed to validate the expression patterns of some PoMADS genes related to floral organ development. Genome collinearity analysis with Arabidopsis and grape revealed the conservation of PoMADS genes during evolution. A total of 857 SSRs were identified by analysing the genome sequences of identified genes. We additionally created protein‒protein interaction networks for PoMADS proteins and analysed proteins that could interact among PoMADSs in Arabidopsis thaliana and grape.

Conclusion: These findings offer fundamental insights for understanding the function of the MADS-box gene family, which can aid in the selection and breeding of tree peony varieties with high ornamental value in addition to supporting the understanding of the process of tree peony floral organogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-024-11197-yDOI Listing

Publication Analysis

Top Keywords

mads-box gene
12
paeonia ostii
12
floral organ
12
organ development
12
tree peony
12
pomads genes
12
gene family
8
genes floral
8
revealed conservation
8
cis-acting elements
8

Similar Publications

Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.

View Article and Find Full Text PDF

Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.

View Article and Find Full Text PDF

Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

The MADS-RIPENING INHIBITOR-DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits.

Plant Physiol

January 2025

Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.

Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!