Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41568-024-00786-4DOI Listing

Publication Analysis

Top Keywords

cancer
11
metabolic
9
tumour host
8
tumour microenvironment
8
cancer progression
8
cachexia metabolic
8
host cancer
8
host
7
tumour
6
metabolic interplays
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.

View Article and Find Full Text PDF

Background: Kentucky is within the top five leading states for breast mortality nationwide. This study investigates the association between neighborhood socioeconomic disadvantage and breast cancer outcomes, including surgical treatment, radiation therapy, chemotherapy, and survival, and how associations vary by race and ethnicity in Kentucky.

Methods: We conducted a retrospective cohort analysis using data from the Kentucky Cancer Registry (KCR) for breast cancer patients diagnosed between 2010 and 2017, with follow-up through December 31, 2022.

View Article and Find Full Text PDF

Background: Oropharyngeal cancer (OPC) incidence is rising globally, predominantly in high-income countries due to human papillomavirus (HPV) infection. However, further data on OPC incidence in Brazil is needed. The aim of this study was to estimate the incidence, trends, and predictions of OPC in Brazilian population-based cancer registries (PBCRs) by period, sex, and topography.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!