The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking. This enables variability on the backbone structure, as well as diverse spatial arrangements of pillars and the partitioning of pore space into several kinds of cages packing in distinct sequences. These sequence-controlled MOFs (SC-MOF-1-6) showcase ultrahigh benzene capture capacities at low-pressure and high volumetric and gravimetric uptake performances in high-pressure methane storage. We provide the construction principles of the SC-MOFs and predict nearly 2,000 possible SC-networks with sophisticated composition sequences at the atomic level by using a Python script.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-024-01717-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!