Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients. Therefore, this study explored the specific role of SIRT2 in DN and its regulatory relationship with inflammatory response. Increased expression of SIRT2 was observed in kidney tissues of DN mice and in HK2 cells induced by HG/PA. SIRT2 knockout mice alleviated microalbuminuria, inflammatory responses, and kidney damage induced by HFD/STZ. In HK2 cells, reducing SIRT2 expression or inhibiting its acetylase activity alleviated the inflammatory response induced by HG/PA, whereas overexpression of SIRT2 exacerbated this response. Further investigation revealed that SIRT2 directly interacts with c-Jun/c-Fos, promoting their deacetylation. And inhibitors of c-Jun/c-Fos partially reversed the upregulation of inflammatory factors caused by SIRT2 overexpression. Meanwhile, disrupting SIRT2 reduced the binding activity between AP-1 and the MCP-1 promoter, while overexpressing SIRT2 further increased their binding activity in HK2 cells. Interestingly, SIRT2 increased its phosphorylation while deacetylating c-Jun, leading to nuclear accumulation of p-c-Jun. In conclusion, SIRT2 knockout can alleviate kidney injury and inflammatory response in HFD/STZ mice. The mechanism is related to the increased acetylation of c-Jun/c-Fos in renal tubular epithelial cells, accompanied by crosstalk between c-Jun phosphorylation and acetylation. Blocking SIRT2 could therefore be a potential therapeutic target for DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00018-024-05567-8 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Recent therapeutic strategies have highlighted the potential of β-hydroxybutyrate (BHB) and α-ketoglutarate (α-KG) as effective anticancer agents, particularly for colon cancer. These metabolites can modulate cellular metabolism and induce epigenetic changes, inhibiting tumor growth. Nonetheless, certain cancer cells may utilize ketone bodies, like BHB as nutrient sources under hypoxic conditions, potentially reducing treatment efficacy.
View Article and Find Full Text PDFElife
January 2025
Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, United States.
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.
Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.
Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.
Mol Neurodegener
January 2025
Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!