Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention.

Commun Biol

Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.

Published: January 2025

Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology. We found that the positively charged residue at the cytoplasm-membrane interface of corin was not a primary determinant in membrane topology but probably served as a charge-repulsion mechanism in the endoplasmic reticulum (ER) to prevent interactions with proteins in the ER, including the signal peptidase. Substitution of the positively charged residue with a neutral or acidic residue resulted in corin secretion likely due to signal peptidase cleavage. In signal peptidase-deficient cells, the mutant corin proteins were not secreted but retained in the ER. Similar results were found in the low-density lipoprotein receptor and matriptase-2 that have positively charged residues at and near the cytoplasm-membrane interface. These results provide important insights into the role of the positively charged cytoplasmic residues in mammalian single-pass transmembrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-025-07545-7DOI Listing

Publication Analysis

Top Keywords

positively charged
24
cytoplasmic residues
12
signal peptidase
12
charged residues
12
cytoplasm-membrane interface
12
charged cytoplasmic
8
residues corin
8
peptidase cleavage
8
endoplasmic reticulum
8
membrane topology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!