The intratumoral microbiota, fatty acid metabolism (FAM), and tumor microenvironment (TME) all provide insights into the management of colon adenocarcinoma (COAD). But the biological link among the three remains unclear. Here, we analyzed intratumoral microbiome samples and matched host transcriptome samples from 420 patients with COAD in The Cancer Genome Atlas (TCGA). All patients were divided into two subtypes (FAM_high and FAM_low) based on the Gene set variation analysis (GSVA) score of FAM pathway. Furthermore, we found significant difference in the intratumoral microbiota signatures between the two subtypes. In-depth analysis suggested that specific microbes in tumors may indirectly modify the TME, particularly stromal cell populations, by modulating the FAM process. More importantly, the crosstalk between the three can have a significant impact on prognosis, response to immunotherapy, and drug sensitivity of patients. Pathological image profiling showed that changes in the TME originating from intratumoral microbiota disturbance could be reflected in pathological image features. In summary, our study provides novel insights into the biological links among the intratumoral microbiota, FAM, and the TME in COAD, and offer guidance for the therapeutic opportunities that target intratumoral microbes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-87194-2DOI Listing

Publication Analysis

Top Keywords

intratumoral microbiota
20
microbiota fatty
8
fatty acid
8
acid metabolism
8
tumor microenvironment
8
colon adenocarcinoma
8
pathological image
8
intratumoral
7
metabolism tumor
4
microenvironment constitute
4

Similar Publications

Intratumoral microbiota, fatty acid metabolism, and tumor microenvironment constitute an unresolved trinity in colon adenocarcinoma.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

The intratumoral microbiota, fatty acid metabolism (FAM), and tumor microenvironment (TME) all provide insights into the management of colon adenocarcinoma (COAD). But the biological link among the three remains unclear. Here, we analyzed intratumoral microbiome samples and matched host transcriptome samples from 420 patients with COAD in The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications.

Mol Cancer

January 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.

The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer.

View Article and Find Full Text PDF

Prognostic stratification of gastric cancer patients by intratumoral microbiota-mediated tumor immune microenvironment.

Microb Pathog

January 2025

Geneis Beijing Co., Ltd., Beijing, 100102, PR China. Electronic address:

Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced GC are limited. Here, we observe that intratumoral microbiota controls chemokine expression, which in turn recruits immune cells into the tumor, and that immune infiltration is strongly associated with patient survival and disease attributes. Furthermore, microbiota regulation of chemokines is differentiated in GC patients with different survival risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!