In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist. Here we report direct observation of the Bose-Einstein condensation of the two-magnon bound state in NaBaNi(PO). Comprehensive thermodynamic measurements confirmed the two-dimensional Bose-Einstein condensation quantum critical point at the saturation field. Inelastic neutron scattering experiments were performed to establish the microscopic model. An exact solution revealed stable two-magnon bound states that were further confirmed by electron spin resonance and nuclear magnetic resonance experiments, demonstrating that the quantum critical point is due to the pair condensation, and the phase below the saturation field is likely the long-sought-after spin nematic phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-024-02071-z | DOI Listing |
Nat Mater
January 2025
School of Physics, Zhejiang University, Hangzhou, China.
In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.
View Article and Find Full Text PDFACS Photonics
January 2025
Department of Physics, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, Pennsylvania 15218, United States.
We report the canonical properties of the Bose-Einstein condensation of polaritons in the weak coupling regime, seen previously in many low-temperature experiments, at room temperature in a GaAs/AlGaAs structure. These effects include a nonlinear energy shift of the polaritons, showing that they are not noninteracting photons, and dramatic line narrowing due to coherence, giving coherent emission with a spectral width of 0.24 meV at room temperature with no external stabilization.
View Article and Find Full Text PDFChaos
January 2025
KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
In this paper, we undertake a systematic exploration of soliton turbulent phenomena and the emergence of extreme rogue waves within the framework of the one-dimensional fractional nonlinear Schrödinger (FNLS) equation, which appears in many fields, such as nonlinear optics, Bose-Einstein condensates, plasma physics, etc. By initiating simulations with a plane wave modulated by small noise, we scrutinized the universal regimes of non-stationary turbulence through various statistical indices. Our analysis elucidates a marked increase in the probability of rogue wave occurrences as the system evolves within a certain range of Lévy index α, which can be ascribed to the broadened modulation instability bandwidth.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.
Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.
View Article and Find Full Text PDFNat Commun
January 2025
CNR Nanotec, Institute of Nanotechnology, via Monteroni, 73100, Lecce, Italy.
Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!