Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41401-024-01437-yDOI Listing

Publication Analysis

Top Keywords

vascular remodeling
28
ii-induced vascular
20
ang ii-induced
20
josd2
11
vascular
9
hypertensive vascular
8
remodeling josd2
8
smooth muscle
8
josd2 overexpression
8
tgfβ-smad pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!