Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation. Key advances include the use of a Cu/Azodiformate catalyst system to facilitate remote allylic C-H activation and the achievement of excellent chemoselectivity through a dynamic ligand exchange strategy using a bis(sulfonamide) ligand. This method features a broad substrate scope and functional group tolerance, successfully applied to the synthesis of various challenging medium-sized cyclic ethers (7-10 members) and large-ring lactones (14-20 members), with high regioselectivity and stereoselectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-56230-0 | DOI Listing |
Nat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, University of Konstanz, Konstanz 78467, Germany.
A scalable and sustainable electrochemical protocol for allylic C-H aerobic oxidation has been developed, enabling the formation of enones without the use of stoichiometric toxic oxidants or metal catalysts and offering an environmentally benign alternative to traditional chemical oxidation techniques. The process has been successfully applied to selectively oxidize a series of natural products and drug molecules, underscoring its potential for widespread adoption in both academic and industrial contexts.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Chemistry, University of Lucknow, Lucknow, India.
Rhodium(III) catalysis has been used for C-H activation of -nitrosoanilines with substituted allyl alcohols. This method provides an efficient synthesis of the functional -nitroso β-aryl aldehydes and ketones with low catalyst loading, high functional group tolerance, and superior reactivity of allyl alcohols toward -nitrosoanilines. We demonstrated that reaction also proceeds through the one-pot synthesis of -nitrosoaniline, followed by subsequent, C-H activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!