Investigations using hot compression tests on a new high-strength weathering steel revealed specific deformation behaviors across different conditions. These tests were performed at temperatures ranging from 850 to 1050 °C and at strain rates from 0.01 to 5 s. Results indicated that a decrease in the deformation temperature combined with an increase in strain rate notably enhanced both the maximum stress and strain achieved. Notably, above 900 °C and with strain rates below 0.1 s, the flow stress of the material reached a steady state at certain strain levels. At a strain rate of 1 s, irrespective of the temperature, the steel shows a continuous strain hardening behavior, achieving no stable flow stress state. Notably, when the true strain exceeds 0.8, an unusual increase in flow stress occurs, predominantly due to secondary work hardening effects. The microstructural changes in the deformed samples were examined using electron backscatter diffraction (EBSD), which helped elucidate the softening mechanisms inherent in this high-strength steel. Further, processing maps developed from true strains of 0.1-0.9, derived from the experimental flow stress data, suggest controlling the strain within 0.2-0.4 to minimize instability during hot working.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-86619-2DOI Listing

Publication Analysis

Top Keywords

flow stress
16
strain
9
weathering steel
8
steel processing
8
strain rates
8
strain rate
8
stress
5
hot deformation
4
deformation characterization
4
characterization weathering
4

Similar Publications

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Purpose: Intestinal ischemia-reperfusion injury (IIRI) occurs as a result of temporary blood flow interruption, leading to tissue damage upon reperfusion. Oxidative stress plays a critical role in this process, instigating inflammation and cell death. Identifying and characterizing genes associated with the oxidative stress response can offer valuable insights into potential therapeutic targets for managing IIRI.

View Article and Find Full Text PDF

Sepsis-associated acute kidney injury (S-AKI) is a critical complication that significantly contributes to the morbidity and mortality of sepsis patients. This narrative review explores the complex and multifactorial pathophysiology of S-AKI, which involves hemodynamic alterations, microcirculatory dysfunction, endothelial damage, inflammatory responses, oxidative stress, and direct tubular injury. Conventional perspectives linking S-AKI primarily to reduced renal blood flow are now being reconsidered, with growing insights highlighting the significance of microcirculatory dysfunction and endothelial activation as key contributors.

View Article and Find Full Text PDF

Background: The Beclin-1/Bcl-2 complex plays a pivotal role in regulating both autophagy and apoptosis in osteoblasts affected by osteoporosis. This study first investigates whether the Bushen Jianpi Huoxue Formula can enhance the cellular function of osteoblasts. Additionally, it initially explores the functional mechanism of Beclin-1/Bcl-2-related apoptosis.

View Article and Find Full Text PDF

Iliac Vein Compression Syndrome (IVCS) is a common risk factor for deep vein thrombosis in the lower extremities. The objective of this study was to investigate whether employing a porous medium model to simulate the compressed region of an iliac vein could improve the reliability and accuracy of Computational Fluid Dynamics (CFD) analysis outcomes of IVCS. Pre-operative Computed Tomography (CT) scan images of patients with IVCS were utilized to reconstruct models illustrating both the compression and collateral circulation of the iliac vein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!