Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks. Here, we use pupylation-based proximity labeling (PUP-IT) as a tool for protein interaction detection in plants. We show that PUP-IT readily confirmed protein interactions for several known protein complexes across different types of plant hosts and that the approach increased detection of specific interactions as compared to biotin-based proximity labeling systems. To further demonstrate the power of PUP-IT, we used the system to identify protein interactions of the protein complex that underpin cellulose synthesis in plants. Apart from known complex components, we identified the ARF-GEF BEN1 (BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1). We show that BEN1 contributes to cellulose synthesis by regulating both clathrin-dependent and -independent endocytosis of the cellulose synthesis protein complex from the plasma membrane. Our results highlight PUP-IT as a powerful proximity labeling system to identify protein interactions in plant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-56192-3 | DOI Listing |
Nat Commun
January 2025
Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks.
View Article and Find Full Text PDFThe GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood.
View Article and Find Full Text PDFTumors can exert a far-reaching influence on the body, triggering systemic responses that contribute to debilitating conditions like cancer cachexia. To characterize the mechanisms underlying tumor-host interactions, we utilized a BioID-based proximity labeling method to identify proteins secreted by Yki adult gut tumors into the bloodstream/hemolymph. Among the major proteins identified are coagulation and immune-responsive factors that contribute to the systemic wasting phenotypes associated with Yki tumors.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!