Rhenium represents an irreplaceable metal resource, which finds extensive applications in diverse fields, particularly in the aerospace and petrochemical industry. However, its remarkably low natural abundance and the lack of independent ore deposits pose significant challenges to its extraction and recovery processes. In this study, we present the highly efficient adsorption of perrhenate by a cationic polymeric nanotrap material, namely CPN-3VIm. The maximum adsorption capacity of CPN-3VIm-Cl for ReO4- attains an impressive value of 1220 mg·g-1. Notably, even in the low-concentration ReO4- solution of 8.5 ppm, the removal rate could still exceed 99%. The recycling performance of CPN-3VIm-Cl also shows exceptional results, with both ReO4- removal and recovery rates surpassing 90% throughout five adsorption-desorption cycles. Furthermore, CPN-3VIm-Cl exhibits nearly 100% extraction efficiency for ReO4- within a broad pH range of 4-10 and demonstrates remarkable structural stability under extreme conditions, such as 3M sulfuric acid or 3M nitric acid. Additionally, a comprehensive investigation into the interaction mechanism between CPN-3VIm-Cl and perrhenate was carried out using SEM-EDS mapping, Raman, FT-IR, and XPS analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401419DOI Listing

Publication Analysis

Top Keywords

cationic polymeric
8
reo4-
5
efficient capture
4
capture reo4-
4
reo4- water
4
water imidazolium-based
4
imidazolium-based cationic
4
polymeric nanotraps
4
nanotraps rhenium
4
rhenium represents
4

Similar Publications

Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers.

View Article and Find Full Text PDF

Efficient Capture of ReO4- from Water by Imidazolium-Based Cationic Polymeric Nanotraps.

Chem Asian J

January 2025

University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES OF AMERICA.

Rhenium represents an irreplaceable metal resource, which finds extensive applications in diverse fields, particularly in the aerospace and petrochemical industry. However, its remarkably low natural abundance and the lack of independent ore deposits pose significant challenges to its extraction and recovery processes. In this study, we present the highly efficient adsorption of perrhenate by a cationic polymeric nanotrap material, namely CPN-3VIm.

View Article and Find Full Text PDF

Solid-state synthesis is an approach to organic synthesis that is desirable because it can offer minimal or no solvent waste, high yields, and relatively low energy footprints. Herein, we report the solid-state synthesis of a novel Schiff base, 4-{()-[(4-methylpyridin-3-yl)imino]methyl}benzoic acid (), synthesized through the reaction of an amine and an aldehyde. was prepared via solvent-drop (water) grinding (SDG) on a multigram scale with 97% yield and was characterized using FTIR, H NMR, and SCXRD.

View Article and Find Full Text PDF

Steric and Electronic Effects of Zirconocenealkyl-Borate Ion Pairs on Catalyst Activation: A Theoretical Study.

ACS Omega

January 2025

Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.

The effectiveness of metallocene catalysts in the cationic ring-opening polymerization (cationic ROP) of ε-caprolactone (CL) is influenced by the choice of metallocene/borate systems, particularly their bulkiness. Recent research examines this effect on the initiation and propagation stages of cationic ROP. We conducted a density functional theory study on the precatalyst activation of cationic CL ROP by zirconocene/borate catalysts, where four models of zirconocene precatalysts (CpZrMe (), (MeCp)CpZrMe (), (MeCp)ZrMe (), and IndZrMe ()) were combined with boron cocatalysts B(CF) and [X][B(CF) ] (X = PhC or PhMeNH).

View Article and Find Full Text PDF

Photocatalytic Organic Semiconductor-Bacteria Imprinted Polymers for Highly Selective Determination of at the Single-Cell Level.

Anal Chem

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

This work utilized a combination of photocatalytic organic semiconductors and bacteria to create a photocatalytic organic semiconductor-bacterial biomixture system based on a bacteria imprinted polymers (OBBIPs-PEC) sensor, for the detection of with high sensitivity in "turn-on" mode at the single-cell level. This outstanding sensor arises from an integration of two different types of semiconductor materials to form heterojunctions. As well this sensor involves combining a semiconductor material with cationic side chains and an electron transport chain within a natural cellular environment, in which the cationic side chain of poly(fluorene--phenylene) organic semiconductor at 2-(4-mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione (PFP-OC@MNC) demonstrated the ability to penetrate the cell membrane of and interact with specific binding sites through electrostatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!