Parkinson disease (PD) is the second most common neurodegenerative disease, and its incidence is climbing every year, but there is still a lack of effective clinical treatments. In recent years, many studies have shown that ferroptosis plays a key role in the progression of PD. Most importantly, many cellular and animal studies and clinical trials have shown that episodes of PD can be alleviated by inhibiting the ferroptosis process, such as utilizing inhibitors, chelating agents, and others. Here, we review the role of ferroptosis, a new form of cell death, in the pathogenesis of PD, and summarize the therapeutic strategies for targeting ferroptosis in PD, hoping to provide new thinking for the study of PD pathogenesis and the development of therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MD.0000000000041218DOI Listing

Publication Analysis

Top Keywords

therapeutic strategies
12
parkinson disease
8
ferroptosis
5
ferroptosis novel
4
novel pathogenesis
4
pathogenesis therapeutic
4
strategies parkinson
4
disease review
4
review parkinson
4
disease second
4

Similar Publications

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Aging is an inevitable physiological process in organisms, and the development of tumors is closely associated with cellular senescence. This article initially examines the role of cellular senescence in tumorigenesis, emphasizing the correlation between telomere length-a marker of cellular senescence-and tumor risk. Concurrently, the study explores the expression levels of senescence-associated markers, such as p16, p53, and mTOR, in the context of tumor development.

View Article and Find Full Text PDF

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

Recent advances in therapeutic strategies of Erdheim-Chester disease.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, 384012, Mahesana, Gujarat, India.

Erdheim-Chester disease (ECD) is a rare form of non-LCH characterized by excessive accumulation of histiocytes in various tissues, leading to significant morbidity. The estimated prevalence of ECD is low, with fewer than 1000 cases reported globally, yet it presents considerable clinical challenges due to its heterogeneous manifestations, which include bone pain, cardiovascular complications, and neurological symptoms. Traditional treatment approaches, primarily involving corticosteroids and chemotherapy, have limitations, including inconsistent responses and significant side effects.

View Article and Find Full Text PDF

β-Glucuronidase-Responsive Albumin-Binding Prodrug of Colchicine-Site Binders for Selective cancer Therapy.

ChemMedChem

January 2025

UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.

The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!