Comparative analysis of bacterial microbiota in Aedes aegypti (Diptera: Culicidae): insights from field and laboratory populations in Colombia.

J Med Entomol

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Published: January 2025

Comparative studies of the microbiota in whole-body mosquitoes from natural populations and laboratory-reared specimens are scarce, particularly in tropical countries like Colombia, where understanding microbial patterns is critical for effective disease control and vector management. This study examines the bacterial microbiota of Aedes aegypti by comparing field-collected mosquitoes from 3 Colombian regions (Southern Amazon, Central Andean region, and Northern Caribbean coast) with laboratory strains (Rockefeller, Otanche, and Tolima). These regions are highly endemic for dengue and are associated with lineage 1 of Ae. aegypti, known for its elevated vector competence. Using next-generation sequencing of the 16S rRNA gene with Illumina technology, we found that field-collected mosquitoes exhibited significantly higher alpha and beta diversity compared to laboratory-reared specimens. Field mosquitoes were enriched with bacterial families such as Acetobacteraceae, Lactobacillaceae, and Bacillaceae, while laboratory mosquitoes showed a greater abundance of Enterobacteriaceae. Differential abundance analysis revealed that Acetobacter and Bacillus predominated in field mosquitoes, whereas Asaia, Cedacea, and Chryseobacterium were more common in laboratory specimens. Notably, Pseudomonas and Acinetobacter were consistently abundant across all samples. Our findings suggest that environmental factors, such as habitat and diet, significantly influence the bacterial composition and diversity of Ae. aegypti in Colombia. Future research should further explore how these factors, alongside genetic components, shape mosquito-microbiota interactions and their implications for disease transmission and vector competence.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jme/tjaf002DOI Listing

Publication Analysis

Top Keywords

bacterial microbiota
8
microbiota aedes
8
aedes aegypti
8
laboratory-reared specimens
8
field-collected mosquitoes
8
vector competence
8
field mosquitoes
8
mosquitoes
6
comparative analysis
4
bacterial
4

Similar Publications

, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.

View Article and Find Full Text PDF

Introduction: The current understanding of colorectal carcinogenesis is based on the adenoma-carcinoma sequence, where genetics, intestinal microbiota changes and local immunity shifts seem to play the key roles. Despite the emerging evidence of dysbiotic intestinal state and immune-cell infiltration changes in patients with colorectal adenocarcinoma, early and advanced adenoma as precursors of colorectal cancer, and carcinoma as the following progression, are rather less studied. The newly colon-site adapted AI-based analysis of immune infiltrates is able to predict long-term outcomes of colon carcinoma.

View Article and Find Full Text PDF

Equine pastern dermatitis (EPD) is a multifactorial disease with a change in the skin microbiome. The present study monitored the influence of Biocenol™ 4/8 D37 CCM 9015 stabilized on alginite on the skin microbiota of healthy horses and model patients with EPD. Based on clinical signs, EPD lesions were identified as exudative or proliferative forms.

View Article and Find Full Text PDF

Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as , while increasing those linked to diseases (e.g., ).

View Article and Find Full Text PDF

Post-streptococcal autoimmune neuropsychiatric disorders (PANDAS) are a group of pathological condition characterized by sudden-onset obsessive-compulsive and tic disorders following beta-hemolytic Streptococcus group A (GAS) infection, hypothesized to be caused by autoimmune mechanisms targeting the basal ganglia. Scant literature is available regarding the microbiota composition in children with PANDAS, however few studies support the hypothesis that streptococcal infections may alter gut microbiota composition in these patients, leading to chronic inflammation that may impact the brain function and behavior. Notable changes include reduced microbial diversity and shifts in bacterial populations, which affect metabolic functions crucial for neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!