CRISPR-associated Plasmonic Colorimeter Method (Ca-PCM): A real-time RGB detection system for gold nanoparticles-based nucleic acid biosensors.

Anal Chim Acta

Fundación IMDEA Nanociencia, Madrid, Spain; Division of Hematopoietic Innovative Therapies, Innovative Therapies Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain. Electronic address:

Published: February 2025

Background: The detection of genetic sequences represents the gold standard procedure for species discrimination, genetic characterisation of tumours, and identification of pathogens. The development of new molecular detection methods, accessible and cost effective, is of great relevance. Biosensors based on plasmonic nanoparticles, such as gold nanoparticles (AuNPs), provide a powerful and versatile platform for highly sensitive, economic, user-friendly and label-free sensing. However, the readout techniques typically employed with such sensors lack temporal and kinetic information, which hampers the ability to perform quantitative detection.

Results: In this study, a novel methodology designated the 'CRISPR-associated Plasmonic Colorimeter Method' (Ca-PCM), has been developed. This method combines RNA target recognition by CRISPR LwaCas13a, AuNPs' aggregation, and real-time colorimetric Red-Green-Blue (RGB) analysis. The system registers the AuNP's plasmonic signatures in real-time using a RGB colour sensor with 3-channel silicon photodiodes having blue, green and red sensitivities. The acquired signals are automatically analysed by an algorithm designed to distinguish between positive and negative samples and to correlate the temporal spectral patterns of aggregation with dose-dependent molecular detection of the RNA target. In addition, the combination of Ca-PCM with a previous isothermal amplification allows the target efficient detection in real clinical applications.

Significance: We have shown that the combination of RGB analysis and continuous temporal measurements is a novel and promising method to characterise the behaviour of gold nanoparticle-based biosensors and to achieve dose-dependent target detection. In addition, the simplicity and cost-effectiveness of this new approach expand the possibilities of other plasmonic-based biosensors and their applicability in low-resources clinical environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.343601DOI Listing

Publication Analysis

Top Keywords

plasmonic colorimeter
8
real-time rgb
8
molecular detection
8
rna target
8
rgb analysis
8
detection
6
crispr-associated plasmonic
4
colorimeter method
4
method ca-pcm
4
ca-pcm real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!