Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases. Consequently, targeting NTF3 with antibodies holds promise as a first in class therapeutic opportunity for a wide range of conditions. Specific and neutralizing antibodies against NTF3 were successfully isolated using phage display. Initial phage display selections revealed a preference of hits for a longer than average complementarity-determining region 3 (CDR3) in the heavy chain variable domain (VH). To investigate this further we developed a long loop length VH CDR3 antibody library that demonstrated increased hit rates versus a standard antibody library and allowed the isolation of IgG that demonstrated inhibition of functional activity, coupled with a favourable kinetic profile. Structural analysis of the Fab/NTF3 interaction, via X-ray crystallography, unveiled an unconventional interaction wherein regions beyond the longer CDR loops of the Fab induced ordering in a flexible loop on NTF3, which remained disordered in its free antigenic state. This comprehensive approach not only sheds light on the therapeutic potential of NTF3-specific antibodies but also provides critical structural details that enhance our understanding of the complex NTF3-Fab interaction thus offering valuable insights for future antibody design and therapeutic development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.slasd.2025.100216DOI Listing

Publication Analysis

Top Keywords

phage display
12
antibody library
8
ntf3
6
identification unique
4
unique binding
4
binding mode
4
mode anti-ntf3
4
antibodies
4
anti-ntf3 antibodies
4
antibodies novel
4

Similar Publications

Engineered ipilimumab variants that bind human and mouse CTLA-4.

MAbs

December 2025

Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.

Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.

View Article and Find Full Text PDF

Zearalenone (ZEN) is a widely distributed mycotoxin with potent estrogenic activity. Detecting ZEN is crucial for assessing its potential health risks. This study developed a highly sensitive non-competitive magnetic phage anti-immunocomplex immunoassay (Nc-MPHAIA) for ZEN detection, utilizing the anti-ZEN single-chain variable fragment (ScFv) and anti-immunocomplex peptide (AIcP), both of which were screened using phage display technology.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to persist, demonstrating the risks posed by emerging infectious diseases to national security, public health, and the economy. Development of new vaccines and antibodies for emerging viral threats requires substantial resources and time, and traditional development platforms for vaccines and antibodies are often too slow to combat continuously evolving immunological escape variants, reducing their efficacy over time. Previously, we designed a next-generation synthetic humanized nanobody (Nb) phage display library and demonstrated that this library could be used to rapidly identify highly specific and potent neutralizing heavy chain-only antibodies (HCAbs) with prophylactic and therapeutic efficacy in vivo against the original SARS-CoV-2.

View Article and Find Full Text PDF

Active targeting of type 1 diabetes therapies to pancreatic beta cells using nanocarriers.

Diabetologia

January 2025

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.

Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.

View Article and Find Full Text PDF

Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!