The present study introduces the idea of a novel fluorescence-based imaging technique combined with a microfluidic platform that enables a precise control of dark transient state populations of fluorescent probes flowing over a uniform, top flat supergaussian excitation field with a constant flow rate. To demonstrate the imaging capability of the proposed detection method, numerical simulations have been performed by considering laser, microscope and flow parameters of experimental setup together with photophysical model and electronic transition rates of fluorescent dyes. As an output data to be assessed, fluorescence image data is simulated numerically for bromine-free carboxyfluorescein and its brominated derivatives having different numbers of bromine atoms. Based on the magnitudes of applied excitation irradiances and flow rates, which can be manually controlled by user during experiments, the presence of dark state populations can appear as broadening, shifts and decays in normalized fluorescence intensity signals that are computed from simulated fluorescence images. As such changes in signals become more pronounced upon an increase in the degree of bromination, it is elicited that heavy atom effect can be resolved by properly tuning excitation powers of laser and flow rates. Proposed imaging method has potential to provide invaluable means to conventional fluorescence methods and can open up new perspectives in biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.70090DOI Listing

Publication Analysis

Top Keywords

detection method
8
heavy atom
8
state populations
8
flow rates
8
fluorescence
5
novel microfluidic-based
4
microfluidic-based fluorescence
4
fluorescence detection
4
method reveals
4
reveals heavy
4

Similar Publications

Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy.

Langmuir

January 2025

Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.

View Article and Find Full Text PDF

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Aim: Identify values that could predict the presence of increased pressure-pain sensitivity independent of the migraine cycle through a single assessment.

Methods: This was a secondary analysis of a previous study in which 198 episodic and chronic migraine patients were assessed during all phases of the migraine cycle. Pressure pain threshold (PPT) was assessed over the temporalis, cervical spine, hand, and leg.

View Article and Find Full Text PDF

Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.

View Article and Find Full Text PDF

Introduction: Prescribable digital health applications (DiGAs) present scalable solutions to improve patient self-management in rheumatology, however real-world evidence is scarce. Therefore, we aimed to assess the effectiveness, usage, and usability of DiGAs prescribed by rheumatologists, as well as patient satisfaction.

Methods: The DiGAReal registry includes adult patients with rheumatic conditions who received a DiGA prescription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!