CRISPR-Cas9 technology has revolutionized genetic engineering, offering precise and efficient genome editing capabilities. This review explores the application of CRISPR-Cas9 for cystic fibrosis (CF), particularly targeting mutations in the CFTR gene. CF is a multiorgan disease primarily affecting the lungs, gastrointestinal system (e.g., CF-related diabetes (CFRD), CF-associated liver disease (CFLD)), bones (CF-bone disease), and the reproductive system. CF, a genetic disorder characterized by defective ion transport leading to thick mucus accumulation, is often caused by mutations like ΔF508 in the CFTR gene. This review employs a systematic methodology, incorporating an extensive literature search across multiple academic databases, including PubMed, Web of Science, and ScienceDirect, to identify 40 high-quality studies focused on CRISPR-Cas9 applications for CFTR gene editing. The data collection process involved predefined inclusion criteria targeting experimental approaches, gene-editing outcomes, delivery methods, and verification techniques. Data analysis synthesized findings on editing efficiency, off-target effects, and delivery system optimization to present a comprehensive overview of the field. The review highlights the historical development of CRISPR-Cas9, its mechanism, and its transformative role in genetic engineering and medicine. A detailed examination of CRISPR-Cas9's application in CFTR gene correction emphasizes the potential for therapeutic interventions while addressing challenges such as off-target effects, delivery efficiency, and ethical considerations. Future directions include optimizing delivery systems, integrating advanced editing tools like prime and base editing, and expanding personalized medicine approaches to improve treatment outcomes. By systematically analyzing the current landscape, this review provides a foundation for advancing CRISPR-Cas9 technologies for cystic fibrosis treatment and related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2025.149257 | DOI Listing |
Int J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFBMJ Open
January 2025
Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia
Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.
Design: A retrospective study over a 5-year period (January 2018-December 2022).
Mol Biol Rep
January 2025
Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
Background: Pathogenic mutations in the CFTR gene disrupt the normal function of the chloride ion channel CFTR protein, resulting in Cystic Fibrosis (C.F.).
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Avda. Libertador 80, Mendoza CP5500, Argentina. Electronic address:
A hypertonic solution of Ibuprofen (Ibu) was designed to nebulize, associating a low concentration of Ibu with L-Arginine (AR), to increase solubility and serve as a nitric oxide donor. To provide preclinical research human bronchial epithelial cells derived from a cystic fibrosis patient homozygous for the ΔF508 CFTR mutation (CFBE41o-) and mouse RAW 264.7 macrophages were pre-treated with Ibu (10-100 μM), AR (20 and 200 μM), or the combination Ibu-AR (10-100 μM).
View Article and Find Full Text PDFSci Transl Med
January 2025
First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany.
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!