Small cell lung cancer (SCLC) remains a challenge in oncology due to its aggressive behavior and dismal prognosis. Despite advances in treatments, novel strategies are urgently needed. Enter liquid biopsy-a game-changer in SCLC management. This revolutionary non-invasive approach allows for the analysis of circulating tumor cells (CTCs), offering insights into tumor behavior and treatment responses. Our review focuses on a groundbreaking frontier: harnessing CTCs to create three-dimensional (3D) organoid models. These models, derived from CTCs that break away from the primary tumor or metastatic locations, hold immense potential for revolutionizing cancer research, especially in SCLC. We explore the essential conditions for successfully establishing CTC-derived organoids-a transformative approach with profound implications for personalized medicine. Our evaluation spans diverse isolation techniques, shedding light on their advantages and limitations. Furthermore, we uncover the critical factors governing the cultivation of 3D organoids from CTCs, meticulously mimicking the tumor microenvironment. This review comprehensively elucidates the molecular characterization of these organoids, showcasing their potential in identifying treatment targets and predicting responses. In essence, our review amalgamates cutting-edge methodologies for isolating CTCs, establishing transformative CTC-derived organoids, and characterizing their molecular landscape. This represents a promising frontier for advancing personalized medicine in the complex realm of SCLC management and holds significant implications for translational research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.critrevonc.2025.104622 | DOI Listing |
TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.
View Article and Find Full Text PDFWorld J Gastrointest Endosc
January 2025
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.
Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.
Front Immunol
January 2025
Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.
View Article and Find Full Text PDFFront Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!