Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis.

Math Biosci

Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA. Electronic address:

Published: January 2025

One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2025.109375DOI Listing

Publication Analysis

Top Keywords

emt
9
tgf-β1
9
extracellular matrix
8
epithelial-mesenchymal transition
8
tgf-β1 tethering
8
tgf-β1-fn tethering
8
signaling dynamics
8
partial emt
8
emt state
8
tethering
5

Similar Publications

LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.

Mol Carcinog

January 2025

Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.

Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.

View Article and Find Full Text PDF

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a common and serious health issue among older men globally. Metabolic reprogramming, particularly involving lactate and mitochondria, plays a key role in PCa progression, but studies linking these factors to prognosis are limited. To identify novel prognostic markers of PCa based on lactate-mitochondria-related genes (LMRGs), RNA sequencing data and clinical information of PCa from The Cancer Genome Atlas (TCGA) and the cBioPortal database were used to construct a lactate-mitochondria-related risk signature.

View Article and Find Full Text PDF

Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!