Cadmium (Cd) pollution is a widespread threat to aquatic life, and ongoing freshwater acidification (FA) can be expected to interact with Cd compounds to disrupt freshwater ecosystems. However, the effects of FA on Cd biotoxicity remain unclear. Herein, the model ciliate Paramecium tetraurelia, a model unicellular eukaryotic organism, was used to explore the response to environmental relevant concentrations of Cd under acidification conditions. We show for the first time that exposure to acidified freshwater accelerated Cd bioaccumulation and enhanced Cd bioavailability in P. tetraurelia, suggesting the synergistic interaction of Cd and FA. The co-exposure greatly reduced the abundance and carbon biomass, altered lysosomal membrane stability, induced oxidative stress, and consumed more ATP in exposed ciliates. Transcriptome plasticity enabled P. tetraurelia to develop a Cd stress-adaptive transcriptional profile (upregulation of transport and detoxification and downregulation of energy metabolism) under acidification. With a concomitant inhibition in energy production, the exposed ciliates might have diverted the energy from growth and cell replication to compensate for the energetic cost from stress response and detoxification. Collectively, acidified freshwater could aggravate Cd toxicity, which, in turn, arouses the response strategy of ciliates to cope with stress, providing a mechanistic understanding of the interaction between freshwater acidification and Cd pollution in the basic trophic level ciliated protozoa in freshwater ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.125725 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China. Electronic address:
Cadmium (Cd) pollution is a widespread threat to aquatic life, and ongoing freshwater acidification (FA) can be expected to interact with Cd compounds to disrupt freshwater ecosystems. However, the effects of FA on Cd biotoxicity remain unclear. Herein, the model ciliate Paramecium tetraurelia, a model unicellular eukaryotic organism, was used to explore the response to environmental relevant concentrations of Cd under acidification conditions.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFAdv Mater
January 2025
Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Architecture, Land, Environment and Mathematics, University of Brescia, - Agrofood Research Hub, via Branze, 43, 25123, Brescia, Italy.
The topic of sustainable water management has become of paramount importance at a global level, especially when considering the high-amount of water used in agriculture, which is a threat to water resource balance. Focused on 38 inventories of nonirrigated vineyard management in the Franciacorta wine-growing region in Italy, this study aims to understand how agronomic practices impact water resources. The integrated statistical approach, based on generalized linear models, reveals how context variables influence different water footprint indicators, such as water scarcity, acidification and freshwater ecotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!