Huangqi-Danshen decoction alleviates renal fibrosis through targeting SCD1 to modulate cGAS/STING signaling.

J Ethnopharmacol

Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China. Electronic address:

Published: January 2025

Ethnopharmacological Relevance: The Huangqi-Danshen decoction (HDD) is composed of Huangqi (Astragali Radix) and Danshen (Salviae Miltiorrhizae Radix et Rhizoma) and has been shown to alleviate renal fibrosis. However, the potential therapeutic mechanisms and effective components of HDD remain unclear.

Aim Of The Study: Both lipid metabolism and cGAS/STING signaling play vital roles in the development and progression of renal fibrosis. However, their relationship in renal fibrosis is largely unknown. The present study aimed to investigate the antifibrotic mechanisms of HDD from the perspective of lipid remodeling and cGAS/STING signaling.

Materials And Methods: In vivo, renal fibrosis was induced by feeding male C57BL/6 mice with 0.2% adenine-diet for 28 consecutive days. The treatment groups were orally administered HDD at low, medium, and high doses of 3.4 g/kg/d, 6.8 g/kg/d, and 13.6 g/kg/d simultaneously with modeling. Renal function was evaluated by the serum levels of urea nitrogen and creatinine, pathological changes of renal tissue were evaluated by Periodic acid-Schiff and Masson's trichrome staining, and renal lipid metabolites were analyzed by lipidomics. Western blotting, immunohistochemistry, and immunofluorescence were used to detect the expressions of fibrosis-related proteins, SCD1, and cGAS/STING signaling-related proteins in renal tissue. In vitro, mouse primary proximal tubular epithelial cells (PTECs) were treated with transforming growth factor-β1 (TGF-β1) or stearoyl-CoA desaturase 1 (SCD1) inhibitor A939572. Additionally, UHPLC-QE-MS analysis and TCMSP database were used to screen the effective components of HDD, and the action mechanisms of these components were verified in mouse primary PTECs.

Results: HDD dose-dependently improved renal function, pathological injury, and fibrosis in adenine-induced chronic kidney disease (CKD) mice model. Moreover, cGAS/STING signaling was significantly activated in fibrotic kidney and was suppressed by HDD treatment. In renal lipidomics analysis, 521 and 138 differential lipids were identified in control vs. CKD and CKD vs. CKD+HDD, respectively. Of note, lipids increased in fibrotic kidneys were more saturated (fewer double bonds), whereas lipids increased by HDD were less saturated (more double bonds). Further, SCD1 expression was significantly down-regulated in fibrotic kidney and could be restored by HDD treatment. The expression of SCD1 was also down-regulated in Ju CKD patients' dataset and TGF-β1-induced fibrogenic responses in mouse primary PTECs. Mechanistically, specific inhibition of SCD1 expression could activate cGAS/STING signaling in primary PTECs. In addition, three components of HDD (isoimperatorin, baicalin, and miltirone) were screened out. Furthermore, administration of these three components, especially isoimperatorin and miltirone, counteracted the activation of cGAS/STING signaling induced by SCD1 pharmacological inhibition.

Conclusion: HDD could alleviate renal fibrosis, which may be related to the regulation of cGAS/STING signaling through targeting SCD1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2025.119364DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
24
cgas/sting signaling
24
renal
12
components hdd
12
mouse primary
12
hdd
11
huangqi-danshen decoction
8
scd1
8
targeting scd1
8
cgas/sting
8

Similar Publications

Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.

Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.

View Article and Find Full Text PDF

Background And Purpose: Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis.

View Article and Find Full Text PDF

One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis.

View Article and Find Full Text PDF

Huangqi-Danshen decoction alleviates renal fibrosis through targeting SCD1 to modulate cGAS/STING signaling.

J Ethnopharmacol

January 2025

Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China. Electronic address:

Ethnopharmacological Relevance: The Huangqi-Danshen decoction (HDD) is composed of Huangqi (Astragali Radix) and Danshen (Salviae Miltiorrhizae Radix et Rhizoma) and has been shown to alleviate renal fibrosis. However, the potential therapeutic mechanisms and effective components of HDD remain unclear.

Aim Of The Study: Both lipid metabolism and cGAS/STING signaling play vital roles in the development and progression of renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!