Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice.

Brain Res

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China. Electronic address:

Published: January 2025

Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation. Pumilio2 (Pum2), an RNA-binding protein, was shown to inhibit Mff translation, while Norad, a long non-coding RNA, sequestered Pum2, alleviating this inhibition. We observed decreased Pum2 levels and binding capacity to Mff mRNA, alongside increased Norad levels and binding to Pum2 in neurons after OGD/R. Overexpression of Pum2 in neurons reduced Mff levels, mitigated mitochondrial fragmentation, and alleviated neuronal injury. In a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R), Pum2 overexpression further improved mitochondrial morphology, reduced infarct volume, and enhanced neurobehavioral recovery. These findings suggest that targeting the Norad-Pum2-Mff axis could provide a promising therapeutic strategy for ischemic stroke by restoring mitochondrial function and reducing neuronal damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2025.149455DOI Listing

Publication Analysis

Top Keywords

neuronal damage
8
norad-pum2-mff axis
8
mitochondrial function
8
levels binding
8
pum2 neurons
8
pum2
6
mitochondrial
5
levels
5
disruption pum2
4
pum2 axis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!