Conotoxins(CTXs) can specifically act on multiple ion channels, which are crucial for the development of neurobiology and novel targeted drug development. At present, >10,000 kinds of CTXs have been sequenced, it would be extremely laborious to conduct experiments for each. μ-CTX KIIIA is a type of substance that can selectively recognize voltage-gated sodium ion channels. This article constructs four derivatives of KIIIA and predicts their 3D structures; afterwards, their molecular orbital arrangements and physicochemical properties were calculated using DFT; then, predicted their toxicokinetic parameters such as absorption, distribution, metabolism, excretion (ADME) and toxicity (T) through Machine Learning (ML); finally, molecular docking and molecular dynamics are used to investigate the interaction modes and binding affinity. The results indicate that the toxicity of KIIIA and its derivatives (KIIIA-1 -KIIIA-4) to the human body is mainly concentrated in the liver and respiratory tract. Among four derivatives, KIIIA-2 (5 Ser → Arg) has better toxicokinetics properties and its binding energy to Na1.2 is -65.32 kcal/mol, which is higher than that of wild type(-32.13 kcal/mol). This study indicate that computational toxicology can facilitate the druggability research of CTXs, and KIIIA-2 can be developed as a potential antiepileptic drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140092 | DOI Listing |
J Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, Yale School of Medicine, New Haven, CT 06520.
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.
View Article and Find Full Text PDFFront Pharmacol
January 2025
IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain.
The Selectivity Filter (SF) in tetrameric K channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K binding sites where dehydrated K binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Background: Lysosome is a highly heterogeneous membranous organelle in eukaryotic cells, which regulates many physiological processes in the cell. Studies have found that lysosomal dysfunction disrupts cellular homeostasis and is associated with Parkinson's disease (PD). Transmembrane protein 175 (TMEM175) is a lysosomal cation channel whose activity is essential for lysosomal homeostasis.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China.
Depression is a mental health disorder and is the fourth most prevalent disease. Previous studies have suggested that statins are involved in the reduction of neuroinflammation. However, the potential mechanism for this relationship is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!