Recent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active Cis-regulatory element (CRE). Higher levels of eRNA synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.5, E16.5, and P0 in both sexes and conducted Cap Analysis of Gene Expression analysis (CAGE) which is capable to capture transcriptional starting site (TSS). We compared the levels of intergenic bidirectional RNA, i.e, potentially eRNA, according to sex at each stage (testis somatic cells vs ovary somatic cells at E13.5, E16.5, and P0) and stage in each sex (E13.5 vs E16.5, E16.5 vs P0, and E13.5 vs P0 in testis somatic cells or ovary somatic cells). Intergenic RNAs with significant changes (|Log2FC| > 1, p < 0.05) were selected. The TSS profile of intergenic RNA changed more profoundly in testis somatic cells than in ovary somatic cells, suggesting embryonic testicular development is driven by larger changes in a transcriptional regulatory network than ovarian development. Based on the profiles of the predicted transcription factors (TFs) that would bind to the active CREs during gonadal development, the NR4A, EGR, and TCF3 families would be novel TFs to play pivotal roles in gonadal development. Identifying active CREs using eRNAs would provide a means to comprehensively understand the transcriptional regulatory system, leading to valuable insights into the gonadal development of male and female individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000543594DOI Listing

Publication Analysis

Top Keywords

somatic cells
24
gonadal development
20
transcriptional regulatory
12
e135 e165
12
testis somatic
12
cells ovary
12
ovary somatic
12
regulatory network
8
cres gonadal
8
active cres
8

Similar Publications

Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.

View Article and Find Full Text PDF

Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology.

View Article and Find Full Text PDF

The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs.

View Article and Find Full Text PDF

Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression.

View Article and Find Full Text PDF

Recent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active Cis-regulatory element (CRE). Higher levels of eRNA synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!