Normal levels of HOCl can resist pathogen invasion and maintain cellular redox balance. However, excessive HOCl can easily harm the ecological environment and human health. Establishing a reliable approach for detection of HOCl can help resolve controversial issues regarding HOCl in physiological systems and help detect HOCl in complex environmental water samples. This study presents the design and evaluation of a HOCl-specific self-immolative fluorescent probe (OX-OCl), which is based on the N-protected phenoxazine dye structure. In aqueous solution, the probe demonstrates a rapid and highly specific response to HOCl within a brief time frame of 15 s, exhibiting good sensitivity with a limit of detection (LOD) of 15.3 nM. Notably, the reaction of OX-OCl with HOCl results in substantial changes in both UV absorption and fluorescence emission. Benefit from this, smartphone-assisted colorimetric and fluorescent sensing platforms had been developed for real-time monitoring of HOCl. Furthermore, owing to its excellent biocompatibility, OX-OCl has been successfully utilized for near-infrared bioimaging of HOCl in live cells and mouse models of arthritis. In brief, this probe offers a new perspective for the convenient monitoring of HOCl in environmental contexts and provides a visual tool for the early clinical diagnosis of related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2025.125738 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China. Electronic address:
Normal levels of HOCl can resist pathogen invasion and maintain cellular redox balance. However, excessive HOCl can easily harm the ecological environment and human health. Establishing a reliable approach for detection of HOCl can help resolve controversial issues regarding HOCl in physiological systems and help detect HOCl in complex environmental water samples.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China.
The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
detection of hypochlorous acid (HOCl) is critical for understanding its complex physiological and pathological roles. Fluorescent probes, known for their sensitivity and selectivity, are the preferred approach for such detections. Anthracene carboxyimide, an analog of naphthalimide, offers extended excitation and emission wavelengths, making it an excellent candidate for developing new fluorescent probes that address the limitations of naphthalimide.
View Article and Find Full Text PDFChembiochem
January 2025
Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India.
Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.
View Article and Find Full Text PDFACS EST Air
September 2024
Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States.
During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl and limonene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!